Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Traffic Inj Prev ; 25(3): 414-424, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38363284

RESUMO

OBJECTIVE: Owing to the harsh environment in high-altitude areas, drivers experience significant driving stress. Compared with urban roads or expressways in low-altitude areas, the driving environment in high-altitude areas has distinct features, including mountainous environments and a higher proportion of trucks and buses. This study aims to investigate the feasibility of predicting stress levels through elements in the driving environment. METHODS: Naturalistic driving tests were conducted on an expressway in Tibet. Driving stress was assessed using heart rate variability (HRV)-based indicators and classified using K-means clustering. A DeepLabv3 model was built to conduct semantic segmentation and extract environment elements from the driving scenarios recorded through a camera next to the driver's eyes. A decision tree and 4 other ensemble learning models based on decision trees were built to predict driving stress levels using the environment elements. RESULTS: Fifty-six indicators were extracted from the driving environment. Results of the prediction models demonstrate that extreme gradient boosting has the best overall performance with the F1 score (harmonic mean of the precision and recall) and G-mean (geometric mean of sensitivity and specificity) reaching 0.855 and 0.890, respectively. Indicators based on the variation rate of trucks and buses have high feature importance and exhibit positive effects on driving stress. Indicators reflecting the proportion of mountain, road, and sky features negatively affect the expected levels of driving stress. Additionally, the mountain feature demonstrates multidimensional effects, because driving stress is positively affected by indicators of the variation rate for mountain elements. CONCLUSIONS: This study validates the prediction of driving stress using environment elements in the driver's field of view and extends its application to high-altitude expressways with distinct environmental characteristics. This method provides a real-time, less intrusive, and safer method of driving stress assessment and prediction and also enhances the understanding of the environmental determinants of driving stress. The results hold promising applications, including the development of a driving state assessment and warning module as well as the identification of high-risk road sections and implementation of control measures.


Assuntos
Condução de Veículo , Humanos , Tibet , Acidentes de Trânsito , Altitude , Aprendizagem
2.
Materials (Basel) ; 13(7)2020 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-32235365

RESUMO

The cement-based grouting materials used for practical purposes in high-geothermal tunnels are inevitably affected by humidity and high temperature, leading to the deterioration of mechanical properties. Based on the characteristics of changing high temperatures and two typical conditions of hot-humid and hot-dry environments in high-geothermal tunnels, many mechanical strength tests were carried out on the grouting material cured under different environmental conditions. The study results indicated that high temperature and low relative humidity were unfavorable to the development of mechanical characteristics of grouting material, but the coupling effect of two factors could improve the strength at early ages and reduce the degradation of long-term strength. As the curing temperature exceeded 56.3 °C, the humidity effect on strength played a more important role in recovering the strength of grouting material damaged by high temperature. Temperature had more significant impact on the relative peak stress while the relative humidity had greater influence on the relative peak strain. A calculation compressive constitutive model was prospered, which considering both temperature and relative humidity. The study results may provide much valuable experimental data and theoretical supporting for the design of compression constitutive of cement-based grouting material in high-geothermal tunnel.

3.
Materials (Basel) ; 12(18)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491906

RESUMO

Degradation of the bond between I-shaped steel and concrete due to the corrosion of I-shaped steel significantly affects the durability of steel reinforced concrete (SRC) structures. This study carried out the accelerated corrosion test and push-out test to study the bond-slip behavior and characteristics considering the corrosion of I-shaped steel, and test results indicated that: (1) The performance degradation of the bond-slip accelerated when the corrosion ratio reached 12%. (2) The corrosion failure pattern of SRC experienced slip phase and destruction phase in the rising stage. (3) Based on the principle of minimum potential energy, the bond stress was obtained only with the load and the displacement in the free end and the loading end. (4) Meanwhile, a new bond-slip degradation model was developed using the interface damage theory. Finally, the proposed model agreed with the experimental results.

4.
Sensors (Basel) ; 19(7)2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30934699

RESUMO

When there are railway tunnels on both sides of a valley, a bridge is usually built to let trains pass. However, if the valley is very close to an urban area, building an open-cut tunnel at the portal and then backfilling it to create available land resources for the city and to prevent excavation slag from polluting the environment would be a wise choice. This has led to the emergence of a new type of structure, namely, the high-fill open-cut tunnel. In this paper, by performing an automatic long-term field test on the first high-fill open-cut tunnel using a bilayer design in China, the variations of earth pressure and structural internal force during the backfilling process were obtained, and different tunnel foundation types were studied. The results showed that the earth pressure significantly exceeded the soil column weight, with a maximum earth pressure coefficient between 1.341 and 2.278. During the backfilling process, the earth pressure coefficient increased at first and then decreased slowly to a relatively stable value, and a stiffer foundation would make the structure bear higher earth pressure (1.69 times the normal one observed during monitoring). The change of internal force had two stages during backfilling: before the backfill soil reached the arch crown, the internal force of the lining changed slowly and then grew linearly as the backfill process continued. Moreover, the axial force ratio of the inner and outer linings was close to their thickness proportion, and the interaction mode between the two layers was very similar to the composite beam.

5.
Int J Environ Res Public Health ; 13(1): ijerph13010064, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26703703

RESUMO

The low atmospheric pressure and low oxygen content in high-altitude environment have great impacts on the functions of human body. Especially for the personnel engaged in complicated physical labor such as tunnel construction, high altitude can cause a series of adverse physiological reactions, which may result in multiple high-altitude diseases and even death in severe cases. Artificial oxygen supply is required to ensure health and safety of construction personnel in hypoxic environments. However, there are no provisions for oxygen supply standard for tunnel construction personnel in high-altitude areas in current tunnel construction specifications. As a result, this paper has theoretically studied the impacts of high-altitude environment on human bodies, analyzed the relationship between labor intensity and oxygen consumption in high-altitude areas and determined the critical oxygen-supply altitude values for tunnel construction based on two different standard evaluation systems, i.e., variation of air density and equivalent PIO2. In addition, it has finally determined the oxygen supply standard for construction personnel in high-altitude areas based on the relationship between construction labor intensity and oxygen consumption.


Assuntos
Doença da Altitude/prevenção & controle , Altitude , Indústria da Construção , Doenças Profissionais/prevenção & controle , Saúde Ocupacional , Consumo de Oxigênio/fisiologia , Oxigenoterapia/normas , Doença da Altitude/fisiopatologia , Humanos , Doenças Profissionais/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...